Solving a variant of problem 6.3, Gray, Costanzo, and Plesha (Gray,
G.L., Costanzo, F., and Plesha, M.E., Engineering Mechanics: Dynamics,
McGraw Hill, New York, 2010.), where kinetics are added (\(I_1\),
\(I_2\), \(I_3\)).
For my students: This is Wright State University, ME 3210, Quiz 2, Spring 2016
The problem statement is: A Moment \(M\) is applied to the rightmost gear
(gear 3). Find the acceleration of the gear as a resulting moment
presuming inertias \(I_1\), \(I_2\), \(I_3\).
Figure awaiting copyright approval. Dummy graphic in place for the
moment.
I am using Python 3.5 in Jupyter (formerly iPython). The original notebook is
available at my Github examples repository.
| # import symbolic capability to Python
from sympy import *
# print things all pretty
from sympy.abc import *
init_printing()
# Need to define variables as symbolic for sympy to use them.
r_A, r_B, r_C, r_D, F_AB, F_DC, M= symbols("r_A r_B r_C r_D F_AB F_DC M", real = True)
I_1, I_2, I_3 = symbols("I_1 I_2 I_3", real = True)
theta_1, theta_2, theta_3 = symbols("theta_1 theta_2 theta_3", real = True)
|
Defining equations. In SymPy, and equation is an expression that is
equal to zero. All terms must be brought to the same side in defining
it.
| EA = F_DC *r_D - I_3 * diff(theta_3(t),t,t)
EA
|
\begin{equation*}
F_{DC} r_{D} - I_{3} \frac{d^{2}}{d t^{2}} \theta_{3}{\left (t \right )}
\end{equation*}
| EB = r_B* F_AB - r_C* F_DC - I_2 * diff(theta_2(t),t,t)
EB
|
\begin{equation*}
F_{AB} r_{B} - F_{DC} r_{C} - I_{2} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )}
\end{equation*}
| EC = r_A *(-F_AB) + M - I_1 * diff(theta_1(t),t,t)
EC
|
\begin{equation*}
- F_{AB} r_{A} - I_{1} \frac{d^{2}}{d t^{2}} \theta_{1}{\left (t \right )} + M
\end{equation*}
| E1 = diff(theta_3(t),t,t)* r_D - diff(theta_2(t),t,t) *r_C
E1
|
\begin{equation*}
- r_{C} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )} + r_{D} \frac{d^{2}}{d t^{2}} \theta_{3}{\left (t \right )}
\end{equation*}
| E2 = r_B * diff(theta_2(t),t,t) - diff(theta_1(t),t,t) *r_A
E2
|
\begin{equation*}
- r_{A} \frac{d^{2}}{d t^{2}} \theta_{1}{\left (t \right )} + r_{B} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )}
\end{equation*}
| solve(EA,diff(theta_3(t),t,t))
|
\begin{equation*}
\left [ \frac{F_{DC} r_{D}}{I_{3}}\right ]
\end{equation*}
\begin{equation*}
\frac{1}{r_{B}} \left(F_{DC} r_{C} + I_{2} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )}\right)
\end{equation*}
I'm going to do substitutions in stages, eliminating one variable at a
time for clarity.
| step1 = EC.subs(F_AB, solve(EB,F_AB)[0])
step1
|
\begin{equation*}
- I_{1} \frac{d^{2}}{d t^{2}} \theta_{1}{\left (t \right )} + M - \frac{r_{A}}{r_{B}} \left(F_{DC} r_{C} + I_{2} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )}\right)
\end{equation*}
| step2 = step1.subs(F_DC,solve(EA,F_DC)[0])
step2
|
\begin{equation*}
- I_{1} \frac{d^{2}}{d t^{2}} \theta_{1}{\left (t \right )} + M - \frac{r_{A}}{r_{B}} \left(I_{2} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )} + \frac{I_{3} r_{C}}{r_{D}} \frac{d^{2}}{d t^{2}} \theta_{3}{\left (t \right )}\right)
\end{equation*}
| step3 = step2.subs(diff(theta_1(t),t,t),solve(E2,diff(theta_1(t),t,t))[0])
step3
|
\begin{equation*}
- \frac{I_{1} r_{B}}{r_{A}} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )} + M - \frac{r_{A}}{r_{B}} \left(I_{2} \frac{d^{2}}{d t^{2}} \theta_{2}{\left (t \right )} + \frac{I_{3} r_{C}}{r_{D}} \frac{d^{2}}{d t^{2}} \theta_{3}{\left (t \right )}\right)
\end{equation*}
| step4 = step3.subs(diff(theta_2(t),t,t),solve(E1,diff(theta_2(t),t,t))[0])
step4
|
\begin{equation*}
- \frac{I_{1} r_{B} r_{D}}{r_{A} r_{C}} \frac{d^{2}}{d t^{2}} \theta_{3}{\left (t \right )} + M - \frac{r_{A}}{r_{B}} \left(\frac{I_{2} r_{D}}{r_{C}} \frac{d^{2}}{d t^{2}} \theta_{3}{\left (t \right )} + \frac{I_{3} r_{C}}{r_{D}} \frac{d^{2}}{d t^{2}} \theta_{3}{\left (t \right )}\right)
\end{equation*}
Finally, the acceleration of the right most gear as a function of the
input moment
| solve(step4,diff(theta_3(t),t,t))
|
\begin{equation*}
\left [ \frac{M r_{A} r_{B} r_{C} r_{D}}{I_{1} r_{B}^{2} r_{D}^{2} + I_{2} r_{A}^{2} r_{D}^{2} + I_{3} r_{A}^{2} r_{C}^{2}}\right ]
\end{equation*}
Comments
comments powered by Disqus